Wavelength conversion using parametric Raman scattering in Silicon microstructures
نویسندگان
چکیده
We demonstrated conversion of optical signals from 1550nm band to the 1300nm band in silicon waveguides. The conversion is based on parametric Stokes to anti-Stokes coupling using the Raman susceptibility of silicon. Achieving high conversion efficiency requires phase matching in the waveguides as well as means to reduce waveguide losses including the free carrier loss due to two photon absorption.
منابع مشابه
Light Generation, Amplification, and Wavelength Conversion via Stimulated Raman Scattering in Silicon Microstructures
This chapter is organized in two parts. In part one, we present the theory of Spontaneous and Stimulated Raman Scattering (SRS), as well as that of Coherent Anti Stokes Raman Scattering (CARS) in silicon. The treatment of these phenomena in silicon is more complex than that in silica fiber, due to crystal symmetry considerations. We show that, because of the intrinsically large Raman coefficien...
متن کاملWavelength Conversion in Silicon
This paper reviews recent results on wavelength conversion in Silicon. The conversion in the 1300 to 1550 range is achieved through parametric Raman coupling between the pump, Stokes and anti-Stokes waves. High signal-to-noise ratio is measured despite a limited conversion efficiency. Achieving high conversion efficiency requires phase matching in the waveguides as well as means to reduce waveg...
متن کاملMid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides
Raman amplification based on stimulated Stokes Raman scattering (SSRS) and wavelength conversion based on coherent anti-Stokes Raman scattering (CARS) are theoretically investigated in silicon-on-sapphire (SOS) waveguides in the mid-infrared (IR) region. When the linear phase mismatch 1k is close to zero, the Stokes gain and conversion efficiency drop down quickly due to the effect of parametri...
متن کاملRaman induced wavelength conversion in scaled Silicon waveguides
Parametric Raman nonlinearities in Silicon waveguides is used to demonstrate wavelength conversion from Stokes to anti-Stokes channels. The effects of two photon absorption and free carrier nonlinear losses on the conversion process have also been analyzed. We find that scaling down the waveguide dimensions to submicron sizes is advantageous in terms of increasing the Raman nonlinearities and r...
متن کاملWavelength conversion in silicon using Raman induced four-wave mixing
Silicon integrated optics has emerged as an attractive technology for realizing passive devices because of the efficient silicon-on-insulator sSOId guiding structures and foundry compatible processing technology. However, silicon is generally perceived to be devoid of active optical properties that are needed to realize more sophisticated optical functions such as, amplification and wavelength ...
متن کامل